Grandeurs et nombres
Lors du colloque « Horizons Mathématiques », organisé à Lille en l’honneur de Rudolf Bkouche, en mars 2018, nous avons animé un atelier intitulé : Autour du théorème de Pythagore : grandeurs et nombres.
L’objectif de l’atelier était de lire une partie du dernier article de Rudolf Bkouche dans le Bulletin Vert de l’APMEP, en l’illustrant par la lecture de certains des textes évoqués dans l’article.
Rudolf Bkouche développe dans l’article cité la double lecture qu’on peut faire du théorème de Pythagore, selon qu’on considère les grandeurs ou les nombres mesures de ces grandeurs.
Pour les Grecs de l’Antiquité, ce théorème porte sur les aires en tant que grandeurs, et non pas en tant que nombres. Le problème fondamental est l’existence de grandeurs incommensurables, comme le côté et la diagonale d’un carré. Or, pour les Grecs de l’Antiquité, les nombres sont les nombres entiers supérieurs ou égaux à 2. On peut considérer des proportions entre ces nombres, mais les nombres entiers et les proportions entre nombres entiers ne suffisent pas à rendre compte des grandeurs géométriques.
Mais on peut aussi considérer ce théorème comme un théorème sur les mesures des aires, c’est-à-dire sur des nombres. C’est le point de vue de Legendre dans ses Éléments de géométrie.
Nous avons lu dans l’atelier des extraits des Éléments d’Euclide et du livre de Legendre, afin de comparer les deux points de vue, en complétant cette lecture par un extrait d’un livre de Tannery, où celui-ci réconcilie les deux points de vue et d’un extrait d’un texte de Dedekind, sur la construction des nombres réels par les coupures.
Vous trouverez dans ce dossier quelques extraits de textes lus durant l’atelier, en complément de l’article (à paraître) dans les Actes du colloque, avec une rapide présentation du texte.
• un extrait des Éléments d’Euclide
• un extrait des Éléments de géométrie de Legendre
• un extrait de Continuité et nombres irrationnels de Richard Dedekind
• un extrait des Leçons d’arithmétique théorique et pratique de Tannery
• un extrait d’un manuel de TC de 1971
Martine Bühler et Anne Michel-Pajus
Références :
Rudolf BKOUCHE, «Sur les démonstrations du théorème de Pythagore. », Bulletin de l’APMEP, 523. p. 195-206, 2017.
Adrien-Marie LEGENDRE, Eléments de Géométrie, seconde édition, An VIII, Paris.
Jules TANNERY, Leçons d’arithmétique théorique et pratique,deuxième édition, Paris, 1900.
Richard DEDEKIND, La création des nombres, Introduction, traduction et notes par HouryaBenis Sinaceur, Librairie Philosophique J. Vrin, Paris, 2008, page 60.
À lire aussi

WebTV spéciale “Mathématiques et Physique-Chimie”
L’inspection pédagogique régionale de Physique-Chimie de l’académie de Créteil propose sa septième WebTV datée du 08/04/2025. Il s’agit d’une émission spéciale sur la thématique « Mathématiques et Physique-Chimie » à destination des professeurs de Physique-Chimie de...

Astronomie pour l’éducation
Nous avons le plaisir de vous annoncer que la troisième édition du colloque Astronomie pour l'éducation dans l'espace francophone (AstroEdu-Fr) se déroulera du 25 au 27 octobre 2025 au planétarium d'Épinal. Co-organisé par le nœud francophone OAENF-CY (Office of...

École d’été d’astronomie du CLÉA (informations, inscriptions)
Le Comité de liaison entre enseignants et astronomes (CLÉA[1]) organise son école d'été 2025 autour du thème "Origines", elle se tiendra au centre d'oxygénation de Gap-Bayard (hautes alpes) du 18 au 25 août 2025. Les inscriptions sont ouvertes. Site de l'école d'été...

Brève de Bibliothèque n°44
Bienvenue dans cette nouvelle brève de bibliothèque. Une fois n'est pas coutume, cette brève finale est double, elle inclut la brève de février et celle d'avril.Pourquoi "Finale" me direz-vous ? Et bien, car je suis venu te dire que je m'en vais. Certes, pas très...